INTRODUCTION

- **My story**
- **Evolution of human dwellings**
- **Regionalism**
- **Global materials**
- **Global architect**
- **Complexity**
- **Anthropomorphisation and vice versa**
- **Seven reasons to live in a small house**

TINY HOUSE TYPOLOGY

- **Typology**
- **Tiny houses**
- **Cabins & Sheds**
- **Playhouses**

BEFORE YOU BUILD

- **Purchasing timber**
- **Tools**
- **Preparing the timber**
- **Paints**
- **Work safety**

CONNECTIONS

- **Metal fasteners**
- **Nails**
- **Carpentry joints**

FOUNDATIONS

- **First steps**
- **Surveying for foundations**
- **The factors determining the foundations types**
- **Types of foundations**

FLOORS

- **Floor**
- **Span**
- **Joist / wood beam connections**
- **Types of beams**

WALLS

- **Walls**
- **Bracing**
- **Thermal insulation**
- **Types of wall structures**
- **Types of siding**

ROOFS

- **Roof structure**
- **Types of shapes**
- **Roof covers**
- **Tee-pee & Yurts**
- **Dormers**

WINDOWS & DOORS

- **Windows**
- **Doors**

STAIRS

- **Staircases**
- **Staircase design**
- **Structural system**

SPACE-SAVING

- **HEATING / SEWERAGE / WATER**

BUILDING DEFECTS

- **Heating**
- **Chimney**
- **Sewerage**
- **Water**

CONCLUSION
Content according to individual structural elements

- Storage spaces: 235 - 247
- Walls: 122 - 167
- Floors: 98 - 121
- Foundations: 68 - 97
- Stairs: 222 - 233
- Roof: 168 - 203
- Plumbing & heating: 248 - 271
- Openings: 204 - 221
• **Tiny A-frame house**
The so-called A-frame is an object defined by a gable roof and floor. The “Alexis” design even shows an equilateral triangle on a cross section. Logically, the interior space includes corners with less than walking height. However, a good design using such places for storage or seating/bedding furniture can make full use of all space and the basic concept of a house with no interior walls is maintained.

• **Gable roof**
A traditional mass design with two floors and a covered deck can accommodate a small group of people year-round. The design emphasises primarily the function of the building and its load-bearing structure which must be easy to assemble. The attic is designed for stand-up height; however, its classic proportions have kept its cosiness and romantic nature of attic spaces.

• **Cottage**
The slightly sloping gable roof creates an impression of a traditional, holiday camp building. The single-storey cabin with its typical generous floor area also hides a mini-loft for sleeping. The face of the cottage opens out to the landscape, providing an undisturbed panoramic view from almost all corners within. The back part of the house offers a covered safe zone. The cottage is intended for occasional holidays; the availability of all amenities makes it suitable for living year-round. The basic cottage shape stems from traditional Czech holiday houses.
I recommend purchasing the best quality tools commonly available to non-professional builders. Good quality tools usually save your time and your work proceeds faster. I have compiled a list of tools which are commonly used in a tiny house construction process.

Besides various tools, you will need a huge quantity of cabinet clamps. These perfect helpers are practically irreplaceable in case of a “solo construction”. They are used in every construction stage. I recommend preparing clamps from the smallest to the largest dimensions (with arms even longer than 1 m).
The next step is adding the remaining points. For an orthogonal rectangular shape with side lengths (a) and (b), as in the figure, we can check using the diagonals and any imperfections in the surveying can be rectified. The diagonal lengths, (c), should be identical. In the case of a square shape, the diagonals should even be perpendicular to each other.

Another possible step is constructing so-called benches. These are used to mark distances with a line. The stakes can then be removed and we can start working on the foundations. If necessary, ropes can be tied to the nails in the benches again to check precision of your construction work.

Before the concrete mix sets, the positions of the metal anchors to which the fundamental load-bearing flooring will be fastened, must be finalised. Again, the precise locations according to the plans can be detected from the positions already marked on the auxiliary structures - benches. The final surveying must be checked properly as the bench positions can sometimes be disturbed during construction work.
Foundation slab - Ann; East Pennsylvania
How to build a tiny house

• **Concrete foundation blocks**

Material:

1.) Concrete (binder/sand/gravel/water) or complex dry concrete mix
2.) Boards/planks
3.) Anchor bolts
4.) Metal fasteners - basic

Postup instalace:

The dimensions of concrete foundation blocks for simple, single-storey wooden houses are usually about 14” x 14”/ 350 x 350mm with a depth of about 24”/ 600mm. After precise surveying, dig a pit and make sure the size of the future foundations corresponds with the project documents (fig. a). Prepare the formwork with inside dimensions according to the dimensions of the future foundation (fig. b). Then install the formwork in place and prepare your concrete mix. Pour in the opening.

Prior to pouring the concrete, make sure that the formwork is well fixed in its place. Install the metal fasteners in the concrete while curing; adjust its height and position to prepare it for attaching the relevant floor joist (fig. c/d). Leave the concrete to cure properly. Remove the formwork and add gravel for aesthetic finish in the surroundings.
a.) Dig a hole for the foundations.
b.) Prepare the formwork for the block part above the ground.

c.) Pour concrete in and install the anchor in the fresh concrete.
d.) Once the concrete has cured, remove the formwork and install floor joists.
• Individual components and functions thereof

Finish flooring - this floor layer has primarily an aesthetic function, improving the user comfort in the environment.

Base board - bracing the entire floor structure, distributing the loads on the walls, acting as base for the finish flooring layer.

Wood floor joist - load-bearing function.

Vapour barrier - preventing interior moisture from entering the thermal insulation while letting undesired moisture through in the opposite direction. Also prevents small parts of thermal insulation from entering the interior environment of the building.

Vapour-permeable air barrier material - preventing exterior moisture from entering the structure while letting moisture from the structure out into the exterior.

Wire lath - separating thermal insulation from the exterior environment, preventing rodents from entering etc. Other materials can substitute for the lath - OSB/plywood or other suitable material - however, they must be permeable to facilitate vapour elimination - this may be achieved e.g. by drilling holes in the boards.

Foundations
- **Asphalt sheet** - insulating the joists from rising moisture from the ground.
- **Blocking** - used as bracing for individual floor joists.
- **Multiple joist** - this structure distributes loads directly to the building foundations.
Floors

Floor framing - cabin Bettie; Texas

www.pinuphouses.com
Walls

Walls define the interior space of the house and, together with the ceiling and floor, constitute our “third skin” next to our clothes. It is very important how we treat this layer, particularly if we live in a cooler part of the Earth where more than half of our life is spent in the interior environment.

There are many factors applicable to wall assessment. The most important information on walls includes the height, load-bearing capacity, or the interior and exterior finish. Walls can be plain white, with rough wooden patterns, glossy, transparent, soft, or sliding. This complex topic has been narrowed down in this tiny house construction guide to cover primarily technical details one must know when intending to build a tiny house.

If the foundations and the board that forms the first upper storey floor are ready, the time has come to start on the load-bearing structure of the walls which will support the floor of the second storey or the roof structure. The load-bearing wall structure is accompanied by other components depicted in the picture on the next page. This chapter will summarise the basic construction principles for various types of walls, with an emphasis on wooden houses. We will explore individual material and aesthetic solutions of the façade and interior. There are many types of walls so the most important types best suited for tiny house construction have been selected for this book.
Walls

• Individual components and functions thereof

- **Plate** - part of the load-bearing frame
- **Stud** - part of the load-bearing frame
- **Interior deck** - aesthetic function; covers the installations behind it.
- **Battens** - holding the vapour barrier and creating space for installations
- **Breathable membrane** - prevents interior moisture from leaking into the thermal insulation. Moisture is transported in the other direction.
- **Battens** - fixing the hydro insulation to the supports, and creating ventilation space.
- **Bracing** - makes the structure more rigid and prevents undesired movements. The same function is served by the sheathing.
- **Sheathing** - acts as bracing for the entire structure and protects the interior layers of the wall at the same time. However, it is not mandatory.
- **Battens** - fixing the hydro insulation to the supports, and creating ventilation space.
- **Rainscreen** - hydro insulation against exterior dampness; the layer should also be capable of letting through any moisture from the inside of the wall outwards.
- **Exterior cladding** - protects the building from exterior weather influences and has an aesthetic function.
- **Installations** - this part of the structure accommodates the power, water, sewerage and other mechanical installations.
Walls

- **Wall with installations and vertical cladding**

Material:
- Interior deck (osb/plywood/boards etc.)
- Vapour check membrane
- Battens 1"x2"/25x50mm + installations + insulation
- Lumbers 2"x4"/50x100mm + insulation
- OSB 23/32"/18mm
- Battens 1"x2"/25x50mm
- Rainscreen
- Battens 1"x2"/25x50mm
- Cladding 3/4"x4 1/2"/20x115mm (boards) + finish battens 1"x2"/25x50mm

This type of walls offers space for installations. It is braced by osb boards, so no other bracing is necessary.
How to build a tiny house

Examples of exterior connection of two walls

Corner "A"

Corner "B"

Corner "C"

Corner "D"

Corner "E"
When assembling a façade from horizontally positioned wood profiles, they must always be slanted “along with the water”. That makes rainwater flow along the outside of the façade components.

Battens can be screwed on to a steel strap, creating a panel which can be attached to vertical battens as a unit. Another method is making a grid of vertical and horizontal auxiliary battens and screwing, or nailing the individual exposed façade battens on to that.
Roof structure

The roof truss is defined as the load-bearing structure which mainly carries the roofing, including the batten systems, and any possible insulation-related structures. The most important parts of the roof truss systems are the wall beams, purlins, beams, rafters, tie beams, straps and various types of bracing. The roof truss must be stable in lengthwise as well as crosswise - this is facilitated by the windbracing structures and gable walls.

Most common roof types:

- Gable roof
- Shed roof
- Hip roof
- Pyramid hip roof
- Gambrel roof

The roof truss systems of light-weight wooden houses are slightly different from those in classic European brick houses. They are characterised primarily by short axial distances between individual rafters and profiles which are usually identical to those of perimeter wall stud dimensions, i.e. 4"x2"/ 100x50mm, or 6"x2"/ 150x50mm.
• Individual components and functions thereof

Ridge truss - static connection of the rafters

Rafter - the basic load-bearing component of the roof

Collar tie - prevents rafters from moving

Roof battens - these fasten the vapour barrier to the inside of the rafters. Interior lining is fastened onto them.

Interior lining - lining boards fastened to the battens

Vapour barrier - prevents interior moisture from entering thermal insulation. Moisture is transmitted in the opposite direction.

Vapour-permeable air barrier material - prevents exterior moisture from entering the structure. Moisture is transmitted from the structure outwards.

Counter battens - these battens create a ventilated gap between the roof battens and the vapour-permeable air barrier. They also attach the air barrier to the rafters.

Ridge truss

Ridge board

Ridge tiles

Roof tiles

Counter battens - attached to the counter battens and are used to fasten the roof tiles

Roof battens - these fasten the vapour barrier to the inside of the rafters. Interior lining is fastened onto them.
Roofs

Dormer structure
Roofing
Roof lining

rafter
ridge
rafter
rafter
rafter

Dormer structure
Roofing
Roof lining

Barbara

www.pinuphouses.com
179
One of the ways of starting the bottom edge of composite shingle roof without sheet metal.

1/2" / 1 cm tall battens to even out the base for the initial row of half-sized shingles.

Shortening the edge to prevent water leading under the roofing by the edge.

Fixing ridge battens to the roof truss

Fixing the snow barrier

www.pinuphouses.com
Load-bearing wall structure

Frame - load-bearing door structure

Diagonal windbracing of the load-bearing wall structure

Door hinges

Lining - battens

Exterior shell of the door, made of planks, boards, particle boards or other board materials. The shell may be double, with thermal insulation inserted between the boards in the load-bearing wall structure.

Lock mechanics

Viewport of the door wing from the interior
How to build a tiny house

Or, the stringer can be trimmed and the treads with risers can be installed thereon.

The last method is fitting the tread in a groove:

If you install your treads on battens or in the stringers, you have to decide whether the treads should be flush with the front or back edge of the stringer. Another option is using the mortise and tenon technique in the centre of treads - this is more demanding on craftsmanship.

A free-standing staircase can be presented in various ways from the perspective of stringer position:
The following box system was used in the Cheryl interior. The website (pinuphouses.com) offers videos and photos from a compact interior solution. The boxes have uniform dimensions and lend themselves to a bed, sofa seating, kitchenette or wall-hung shelving.

The shelves are held by four pins; their vertical position between the load-bearing structure studs can be adjusted.

The box can be topped with an upholstered lid, creating storage space and a seat at the same time.
Burning regulation lever

ON

OFF

Chimney and regulation lever

Stove top for heating water

Window for adding fuel and watching the flames

Lighting-up door

Cover metal protecting the floor from burning

Slide-out ash tray from the bottom of the wood burner.

www.pinuphouses.com

251
Sewerage

- Bitumen sheet
- OSB/boards
- Battens 40x60mm / 1 1/2" x 2 1/2"
- Battens 40x60mm / 1 1/2" x 2 1/2"
- Door hinges
- Interior catch

- OSB/boards
- Bitumen sheet
- Sewerage

- Battens 40x60mm / 1 1/2" x 2 1/2"
- Boards 20mm/ 1/4"
- Boards 25mm/ 1"
- 50x100mm/ 2"x4"

- Bricks / rocks

www.pinuphouses.com

261
Well shaft

For locations with sufficient quantities of pure, shallow underground water, creating a well by a mining technique is a good choice. The well manages huge irregular supply and is easy to clean. It is dug either manually while the concrete rings are put in place, or mechanically by drilling with an auger. The design depth is usually 3.5 to 4 m below the underground water level. Classic wells are not really suited to weekend houses because water stagnates there most of the year if it is only used at weekends. To guarantee water supply even in hot summers, the wells must be deep enough. Moreover, other wells in the neighbourhood can drain them of water.
Most common defects

Rotten or missing exterior paint
- The wall structures are not protected
- Degradation accelerates
- Negative visual impression

Warped door and window frames
- Deteriorated or zero mobility
- Poor thermal insulation properties

Insufficient weather-stripping
- Poor thermal insulation properties
- Poor sound insulation properties

Loose, rotten deck boards
- Health hazard (injury)
- Limited use

Rotting non-impregnated parts of floor, damaged by biological pests - termites
- Risk of serious static problems
- Serious threat to the inhabitants
- Increased interior humidity
- Reduced thermal insulation properties of the building

Missing roofing, or holes in roofing
- Risk of precipitation leaks
- Fungi and mould proliferation
- Degradation of internal structures

Blocked chimney vent
- Smoke contaminates the interior
- Risk of suffocation

Absence of ventilated roof, incorrect ridge structure
- Risk of water condensation inside the structure
- Fungi and mould proliferation

Blocked eaves, rusty and dysfunctional gutters, holes or rust in the metalwork
- Leaks in the interior structures
- Dysfunctional rainwater management

Insufficient parameters of load-bearing structure
- Load-bearing elements deflect too much
- Expansion cracks occur
- Structures become misaligned

Insufficient thermal insulation in walls, floors and ceilings
- Huge thermal losses in the building
- Uncomfortable user environment

Lack of vapour barriers
- Interior structures become damp
- Fungi and mould proliferation
- Subsequent loss of thermally insulating properties of the building

Insufficient hot water capacity
- Lower user comfort

Insufficient wiring
- Impossible to use electrical appliances
- Electricity hazard in case of neglected electric wiring

Plumbing: pipe leakage, corrosion, clogged pipes, low water pressure
- Interior structures become damp
- Dysfunctional fixtures

Lack of kitchen and bathroom exhaust
- Interior structures in the building become damp
- Insufficient odour extraction

Interior cracks
- Poor aesthetic impression

Warped floor tiles, floor boards
- Poor aesthetic impression
- Lower user comfort

Lack of kitchen and bathroom exhaust
- Interior structures in the building become damp
- Insufficient odour extraction